评论

橡胶制品的低温脆性

橡胶脆化温度是指橡胶在低温下,力学性能发生形态突变时的对应温度。脆性温度是其物理意义是橡胶在外来冲击力下出现断裂时的高温度。换言之,外界温度高于此点,外力冲击就不在使它断裂。用脆性温度来衡量橡胶的低温性能更具有实用意义,因为温度高于此点,橡胶就进入高弹态,而玻璃化温度是橡胶保留弹性的低温度极限,低于此,则弹性就完全消失了。所以,对于耐寒橡胶来说,应该是把脆性温度Tb,而不是把玻璃化温度作为考核指标。

橡胶的低温脆性温度主要取决于橡胶的分子结构。因为主链结构,侧基、极性等发生变化时,Tg、Tb也随之变化。凡是主链柔软、侧基少且不带极性基因的橡胶Tg,Tb均为偏低,如天然橡胶、顺丁橡胶就是典型代表。一般而言,各胶种的Tb比Tg高出15-20℃。当然,也有个别例外,如顺丁橡胶的Tb比Tg高出50℃,原因是其主链结构的两侧所连接的全是氢原子而非基团,因此柔顺度特别高,故Tg特别低。除了胶种以外,配合增塑剂也有助于降低玻璃化温度和脆性温度。因为它们都能提高分子链的柔软性,增进流动性。

如何选择合适的 橡胶低温脆化仪

1温度的准确性,均匀性,稳定性。合适的低温脆化仪,必须有合理的搅拌装置,保证温度的均匀性,稳定性。

2,冲击速度,保证冲击锤的规定冲击速度。

3,冲击能量,保证冲击单次每片试样的冲击能量不低于5J

4,冲击刃与夹具的位置,保证在合理误差范围内。

能满足以上几点才是合适的橡胶低温脆化仪。

影响 橡胶脆性温度的的因素

①橡胶的耐寒性是指在规定的低温下,能保持橡胶弹性和正常工作的能力。

③硫化胶的耐寒性能主要取决于高聚物的两个基本特性:玻璃化转变和结晶。两者都会使橡胶在低温下丧失弹性。

脆性温度的影响因素

对于非结晶型橡胶,玻璃化温度较低,耐寒性较好。对于结晶性橡胶,耐寒性要考虑玻璃化温度的高低、结晶情况。增大橡胶分子链的柔顺性,减少分子间作用力及空间位阻,削弱大分子链规整性的橡胶成分与结构因素,都有利于提高橡胶耐寒性。

交联键的类型影响橡胶的耐寒性。天然橡胶使用传统的硫化体系时,随硫磺用量的增加,直到30份,其剪切模量随之提高,玻璃化温度也随之上升(可上升至20~30℃)。

产生上述差异的原因是,用硫磺硫化时,在生成多硫键的同时,还生成分子内交联键,并且发生环化反应,因此使得链段的活动性降低,弹性模量提高,玻璃化温度上升。减少硫磺用量、使用半有效或有效硫化体系时,多硫键数量减少,主要生成单硫键和二硫键,分子内结合硫的可能性降低,因此玻璃化温度上升幅度较多硫键小。

体积膨胀系数较大,可使链段活动的自由空间增加,有利于玻璃化温度的降低。另外,过氧化物硫化时,形成牢固的、短小的C-C交联键,而使用硫磺硫化时,则会形成牢固度较小、长度较大的多硫键,因此在发生形变时,要克服的分子间作用力会更大一些,同时弱键发生畸变,这样就增加了滞后损失,增大了蠕变速率,硫化胶中的黏性阻力部分比过氧化物硫化胶更大一些。也就是说,用硫磺硫化的橡胶中,分子间的作用力要大得多,这正是硫化胶耐寒性较差的原因。

脆性温度的影响。

②另外合理的选用软化增塑体系是提高橡胶制品的耐寒性的有效措施,加入增塑剂,可使橡胶玻璃化温度下降。耐寒性较差的丁腈橡胶、氯丁橡胶等极性橡胶,主要是通过加入适当的增塑剂来改善其耐寒性能。因为增塑剂能增加橡胶分子柔性,降低分子间作用力,使分子链段易于运动,所以极性橡胶要选用与其极性相近、溶解度参数接近的增塑剂。软化增塑剂类型与用量对橡胶耐寒性至关重要。

影响橡胶材料脆性温度测试结果的因素非常多:

内在因素方面,橡胶材料的内部缺陷、组分、分子结构、分子链的柔顺性、分子量大小等会直接影响材料本身的脆性温度; 外在因素方面,试验设备、试样前期制备与处理、试验温湿度环境、试样压片和剪裁厚度、试验过程中的冲击位置和时间、试样加持力等会影响橡胶材料的脆性温度测试结果。

免责声明:本文系网络转载,版权归原作者所有。但因转载众多,或无法确认真正原始作者,故仅标明转载来源,如标错来源,涉及作品版权问题,请与我们联系,我们将在第一时间协商版权问题或删除内容信息来源网络,稍作整理,不代表本工作室观点,仅做橡胶行业技术人员参考。本公众号以网摘为主,目的是做橡胶行业免费开放的交流平台,共同提高橡胶行业技术人员认知,没有任何商业目的。返回搜狐,查看更多

责任编辑:

平台声明:该文观点仅代表作者本人,搜狐号系信息发布平台,搜狐仅提供信息存储空间服务。
阅读 ()
大家都在看
推荐阅读